In Situ Nanopressing: A General Approach to Robust Nanoparticles-Polymer Surface Structures

نویسندگان

  • Xiaojie Zhang
  • Junhui He
  • Binbin Jin
چکیده

We report a novel, facile and general approach, in situ nanopressing, to integrate nanoparticles and polymers in a thin film configuration, where both nanoparticles exposure and film robustness are indispensable for applications. By simply pressing silica nanoparticles into a polymer thin film under an external force, we successfully attained a nanoparticles-polymer thin film, where the silica nanoparticles were partly embedded in the polymer thin film. The outstanding characteristic of easy-to-fabricate nanoparticles-polymer thin films combined the properties of both materials, giving excellent antireflective and antifogging properties, as well as enhanced the robustness of composite thin film. This in situ nanopressing may not only provide an alternative to meet the challenge of constructing mechanically robust nanoparticles-polymer thin films that require nanoparticles on the film surface, but also enrich the methodology to integrate nanoparticles and polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Chemical Oxidative Graft Polymerization of Aniline from Fe3O4 Nanoparticles

This study aims at exploring an effective route in the in situ graft polymerization of aniline from Fe3O4 nanoparticles. To this goal, Fe3O4 magnetic nanoparticles were prepared by coprecipitation method using ammonia solution as the precipitating agent, and were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM)....

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Ligand-mediated self-assembly of polymer-enveloped gold nanoparticle chains and networks.

We demonstrate a universal approach to assemble gold nanoparticles (AuNPs) into ordered robust nanostructures. Colloidal AuNPs are partially coated by thiol-containing ligands and then destabilised into anisotropic superstructures. In situ polymerization of the surface attached ligands produces enveloped nanoparticle networks with retained nanoplasmonic properties and enhanced stability.

متن کامل

Nanopressing: toward tailored polymer microstructures and nanostructures.

A simple and versatile method is developed for preparing anisotropic polymer particles by pressing polymer microspheres at elevated temperatures. Polystyrene (PS) microspheres are used to demonstrate this approach. Depending on the mechanical deformation and wetting of the polymers on the substrates, polymer structures with special shapes such as barrel-like or dumbbell-like shapes can be prepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016